суббота, 25 февраля 2017 г.

Современные открытия в области математики


В  1900 году на математическом конгрессе в Париже Давид Гильберт предложил список из 23 проблем, которые должны быть решены в 21 столетии. На сегодняшний день разрешена 21 проблема. В 1970 году выпускник матмеха Ю.В. Матиясевич завершил решение десятой проблемы Гильберта.
В начале 21 века в Математическом институте Клэя был составлен аналогичный список из семи важнейших задач математики на 21 столетие. При этом за решение каждой из них объявлялся приз размером 1 миллион долларов. Еще в 1904 году одну из важнейших задач сформулировал Пуанкаре: все трёхмерные поверхности в четырёхмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Если говорить простыми словами, то гипотезу Пуанкаре можно изложить так: если трёхмерная поверхность в чем-то имеет сходство со сферой, то ёе можно расправить в сферу. Утверждение Пуанкаре называют формулой Вселенной из-за его важности в изучении сложных физических процессов в теории мироздания и из-за того, что оно даёт ответ на вопрос о форме Вселенной. Данное открытие играет свою роль и в развитии нанотехнологий.
Что касается других современных открытий в области математики, за прошедшие годы был решён ряд важнейших классических проблем, которые сохраняют актуальность в современной науке, намечены и развиты новые пути исследований, поставлены и решены серьёзные прикладные задачи. Все это стало возможным благодаря инновационным технологиям.
Например, в Математическом институте им. В.А. Стеклова академик А.А. Болибрух решил классическую проблему сведения произвольной неприводимой системы линейных дифференциальных уравнений с рациональными коэффициентами к стандартной биркгофовой форме при помощи аналитических преобразований.